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Abstract 

The idea of direct simulation is to simulate in the space of the original data units, with minimal 
assumptions or transformations about the data distribution.  A common approach to direct 
simulation is to proceed in a sequential fashion: direct sequential simulation (DSS).  While the 
idea is not new, full development of the framework remains to be seen.  The benefits of multiscale 
data integration, avoidance of the “Gaussian disease”, and flexible distribution considerations 
are offset by problems with histogram reproduction, the pervasive influence of Gaussianity, and 
proportional effect reproduction.  This paper examines the promises and pitfalls of direct 
simulation with some illustrative examples, and also discusses the future of DSS as a practical 
alternative for natural resource characterization.  The future of DSS requires a procedure to 
account for the dependency between the local variance and mean. 

Introduction 

Over the last decade, direct simulation has been proposed as a viable alternative to the venerable 
Gaussian simulation approaches.  The idea of direct simulation is to simulate in the space of the 
original data units, with minimal assumptions or transformations about the data distribution.  
Behind this key idea is the principle of simple kriging.  Journel (1994) first showed that the 
covariance of simulated values reproduces the target covariance model if the simulated values are 
drawn from a distribution centred about the simple kriging (SK) mean and a variance given by the 
SK variance.  Indeed, Bourgault (1997) showed this to be true for different distributional shapes 
including the uniform, dipole and of course, the Gaussian distribution. Caers (2000) also shows 
this for a uniform, double exponential, double exponential with a spike, and a “bootstrapped” 
distribution. 

Covariance reproduction without relying on the Gaussian framework seeded the idea for direct 
simulation.  The key premise for why direct simulation works lies in the orthogonality between 
the SK estimate, Z*(u), and the squared error which forms the basis for the SK error variance, 

2
( )SKσ u .  This can be thought of in terms of projections where the squared error, [Z(u)-Z*(u)]2, is 

orthogonal to the space of all finite linear combinations of the random variables (RV), Z(uα), α = 
1,..., n (Journel and Huijbregts, 1978) (see Figure 1).  The kriging estimate, Z*(u), lies in this 
space as it is a linear combination of the RVs, Z(uα), α=1,..., n: 
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The squared error term, [Z(u)-Z*(u)]2, represents the distance to the unknown true value, Z(u).  
Based on Projection Theory, there is a unique and exact solution that yields the linear 
coefficients, λα, α=1, ..., n, such that this distance is minimized (Journel and Huijbregts, 1978).  
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This solution is referred to as the projection of Z(u) onto this space.  The corollary to kriging lies 
in the fact that the weights, λα, α=1, ..., n, are determined such that the expected squared error, 
E{[Z(u)-Z*(u)]2}, is minimum.  This visual interpretation of simple kriging can also be thought of 
as satisfying the Generalized Theorem of Pythagoras (Anton and Rorres, 1991). 

Orthogonality of the kriged estimate and the squared error leads to an error variance that is 
independent of the data, commonly referred to as the homoscedascity of kriging.  Under a 
Gaussian paradigm, this poses no problems; in fact, it would be exactly right.  In reality, natural 
phenomena rarely possess characteristics similar to the Gaussian distribution.  This is particularly 
evident upon examining the relationship between the local average and the local variability, 
which, contrary to the homoscedasticity inherent in kriging, often reveals the presence of a strong 
relationship between the two statistics.  This relationship is referred to as heteroscedasticity, more 
specifically it is the proportional effect (Journel and Huijbregts, 1978).  This poses the most 
significant problem for direct simulation. 

This paper presents the promises and pitfalls of direct simulation with some illustrative examples.  
Five main areas of discussion are highlighted: (1) principle of simple kriging, (2) implementation 
of direct simulation, (3) multiscale data integration, (4) histogram reproduction, and (5) 
accounting for the proportional effect.  Finally, the future of DSS is discussed. 

The Simple Kriging Principle 

Reproduction of the covariance only requires that the conditional probability distributions have a 
mean and variance given by simple kriging (Journel, 1994).  Journel proved this by showing 
firstly, the detailed simulation of a variable at location u, then adding this simulated value to 
simulate the next location, u', and finally checking the covariance between these two simulated 
variables. 

Consider a stationary random variable, Z(u), with zero mean and unit variance.  Firstly, construct 
a simulated value such that it can be decomposed as 

( ) ( ) ( )s sZ m R= +u u u  

where m(u) is the expected value at location u ∈ domain, A, and R(u) is a random variable drawn 
from a distribution with zero mean and variance, σ2(u).  The local mean is given by kriging mean 
(Equation 1), and the variance is given by the SK variance: 
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where C(u - uα) is the covariance between the location u and the data located at uα, α=1,…, n, 
2 ( )SKσ u is the simple kriging variance, and the weights, λα, α=1,…,n are obtained by solving the 

normal equations: 
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This simulated value is added to the conditioning data set, and simulation is performed at the next 
location u′=un+1 with the following kriged mean and variance:   
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Note that the weights λα, α=1,…,n+1 are not the same as the weights λα, α=1,…,n obtained from 
solving the system in Equation 3.  The simulated value is given as  

*( ) ( ) ( )s sZ Z R′ ′ ′= +u u u  

The covariance between the two simulated variables is then examined: 
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where *{ ( ) ( ')}SE Z R⋅u u  and { ( ) ( ')}S SE R R⋅u u  are zero since *( )Z u and ( ')SR u  are independent of 
each other and ( )SR u and ( ')SR u are also independent.  The remaining portions of the right hand 
side are non zero since the kriged mean at the second location depends on the mean and randomly 
drawn value at the first location. 

Expanding and simplifying the remaining two terms yields 
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Equations 7 and 8 are substituted into Equation 6: 
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It is by this logic that Journel (1994) proved that so long as the conditional mean and variance are 
provided by simple kriging, covariance reproduction could be achieved without making any 
assumptions about the distributional shape.  This is an exciting result as it opened the way for 
geostatisticians to consider simulation outside of the Gaussian framework without the inference 
effort required under the indicator paradigm. 
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DSS Methodology 

A common approach to simulation is to proceed in a sequential fashion; thus, Direct Sequential 
Simulation (DSS) was coined (Xu and Journel, 1994).  The sequential simulation framework is 
straightforward: 

1. Select a random path visiting all locations. 

2. At each location: 

a. Search for all nearby data of different types and/or scale and previously simulated 
nodes (e.g. P data types with np samples). 

b. Perform simple kriging to determine the parameters corresponding to the 

conditional distribution, )( ) ( ), , ( )1(F Z Z Zp p npu u u… , p=1, ..., P. 

c. Draw a simulated value from this conditional distribution using Monte Carlo 
simulation.  This simulated value is added to the conditioning data set. 

3. Proceed to next node and repeat Step 2, until all locations are simulated. 

The virtues of simplicity cannot be understated.  The sequential algorithm was proposed by 
Johnson (1987), and is common in most geostatistical literature (Isaaks, 1990; Goovaerts, 1997; 
Deutsch and Journel, 1998; Chiles and Delfiner, 2002; Sinclair and Blackwell, 2000).  There are 
other approaches for simulation, including the matrix approach (Davis, 1987) and turning bands 
(Journel and Huijbregts, 1978); however, the simplicity and efficiency of sequential simulation 
has made it the most popular approach in practice. 

Indicator and Gaussian simulation have long been the “standard” geostatistical methods of choice 
in modern practice.  Unlike sequential Gaussian simulation and sequential indicator simulation, 
the promise of DSS is that neither pre- nor post-processing steps are required.  There is no need 
for data transformation, whether it is to a Gaussian or an indicator formalism.  This sequential 
approach is common in mainstream numerical modelling, regardless of whether that modelling is 
performed under a parametric or non-parametric model. 

Multi-Scale Data Integration 

The current motivation for development of the direct simulation framework is the promise of 
integrating multiple data types from different sources and of different scales.  Integrating data of 
different volume supports is neither new nor difficult in theory.  Cokriging using average 
covariance/variograms permits consideration of multiscale data.  In fact, the generalized 
cokriging equations are straightforward to obtain.   

Consider P stationary random variables, Zp, p=1,…,P with mean µp defined on support Vp centred 
at location uαp, where α = 1,…, np and np is the number of available data of type p. It is not 
necessary that the volume supports Vp, p=1,…,P be constant. 

1
( ) ( )
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Vα α= ∫u u  
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Without loss of generality, consider the residual of Zp, Yp = Zp - µp.  Simple cokriging of the 
residual yields the following simple cokriging (SCK) variance: 

( ) ( )∑∑
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simple co-kriging system of equations: 
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The resulting cokriging estimate and estimation variance correspond to the conditional 
expectation and variance of the RV Yp(u). 

Greater efficiency can be achieved by simultaneously cokriging M multiple data types, where M 
≤ P.  This is simply achieved by changing the column vector of weights and right hand side 
covariance into an M x P matrix. An additional index is required to indicate the variable to be 
estimated.  For this purpose, the m, m=1, …, M, index is introduced. 
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Solving for the weights of the resulting co-kriging system requires little additional effort since the 
large left hand side data to data covariance matrix (in Equation 9) only has to be inverted once.  
Matrix multiplication of the inverted covariance matrix with the additional M-1 columns of the 
right hand side covariance will give the weights to estimate the other M-1 additional variables.  In 
fact, most solvers can be modified to solve systems of simultaneous equations with multiple right 
hand sides without explicitly solving for an inverse.  The only additional computation required in 
order to simultaneously estimate the collocated data types is the determination of the right hand 
side volume to volume covariance between the location to be estimated and the nearby data of P 
types. 

While cokriging of one variable gives the conditional expectation and variance of the RV, 
simultaneous cokriging of multiple RVs gives the conditional mean vector and covariance matrix 
of the M RVs.  Simulation using these distributional parameters must still be performed. 

All this is fine in the context of estimation where cokriging can be performed in the space of the 
data; however, in the context of Gaussian simulation, which is the most common simulation 
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method in practice, using average statistics after a non-linear transformation and back 
transforming to original units does not work.  Consider three numbers: 1, 2 and 10.  The average 
of these three numbers is 4.33.  Now consider an exponential transform, ex where x is the data.  
This transform gives: 2.718, 7.389 and 22026.470, respectively.  The average of the transformed 
values is 7345.524, which after back transformation yields 8.902.  This is clearly not the same as 
the average in original space.  Thus averaging in a non-linear space, such as Gaussian space, does 
not provide an appropriate method of accounting for multiscale data.  This provides, yet, another 
impetus for pursuing DSS. 

Histogram Reproduction 

The topic of histogram reproduction is quite broad.  It not only encompasses the obvious global 
distribution reproduction, but it also addresses the challenge of inferring the local distribution 
based on only two parameters.  While this is sufficient information for a parametric model like 
the Gaussian model, it is often inadequate for more realistic non-parametric distributions. 

The lack of a distributional assumption requirement is an obvious benefit for DSS.  Natural 
phenomena rarely follow a parametric form such as the Gaussian distribution, and while quantile 
transformation permits a change from one distribution to any another, there is nothing that says 
we should transform the data to a parametric form.  That data transformation is a widely accepted 
part of the modelling work flow speaks volumes about our strong and continued reliance on 
simple, yet restrictive mathematical models. 

In fact, one could argue that the affect of data transformation on the true spatial distribution of the 
data may be undesired.  Transformation to and back-transformation from Gaussian space yields 
some disturbing results when applied to skewed distributions.  While statistical fluctuations are an 
inherent property of stochastic simulation, it is expected that these deviations should be 
reasonable and unbiased.  For any one realization, minor fluctuations from a zero mean and unit 
variance are expected; however, when these values are back transformed to original units a slight 
shift in the mean in normal space may translate to a more significant shift of the mean in original 
units.  Similarly, the combined fluctuation of the mean and variance in normal space may 
translate to more noticeable shifts in original space. This is particularly true for skewed 
distributions, which is the case for some real phenomena.  Fixes to this particular problem have 
been proposed (Journel and Xu, 1994); yet this can be avoided altogether if we do not perform 
any data transformation prior to modelling – hence direct simulation. 

Although Journel (1994) showed that covariance reproduction was achievable without any 
distributional assumptions, histogram reproduction remained a challenge.  Most of the last decade 
has seen the majority of research focussed on this specific issue in DSS. Soares (2001) proposed 
to determine the local cumulative distribution function (cdf) by sampling from part of the global 
cdf.  Caers (2000) suggested the use of a posterior correction of the histogram originally proposed 
by Journel and Xu (1994), in combination with an acceptance/rejection approach to determining 
the local cdf.  Oz et. al. (2003) proposed the prior use of a Gaussian transform to determine a 
table of local distributions that could be accessed during DSS. 

Despite the fact that DSS permits different shapes of the local distributions, the global 
distribution of simulated values tend to a symmetric, bell-shaped distribution characteristic of the 
Gaussian distribution (see Bourgault (1997) and Caers (2000)).  This is a reflection of the 
pervasive influence of the Central Limit Theorem, sometimes referred to as the “Gaussian 
disease”.  Of the different approaches to infer the local distribution, only the approach proposed 
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by Oz et.al. (2003) is successful at reproducing the global distribution without need for a post-
simulation histogram correction. 

While histogram reproduction is key to the success of any simulation approach, this is not a 
significant obstacle in the widespread consumption of DSS.  Actually, the work conducted in the 
past decade shows that there are any number of tricks and tools that can be employed to 
reproduce the histogram with varying degrees of desire.  Although we intuitively understand that 
different distributions should exist to reflect different local regions, there is nothing in the 
prevailing DSS algorithms that will account for the proportional effect.  The practicality and 
hence, viability, of DSS depends heavily on the promise of honouring the proportional effect.   

Proportional Effect 

By virtue of DSS’ dependence on kriging, the resulting local variance is independent of the data 
values and the estimate, hence it is homoscedastic.  In contrast, the variance of mineral grades or 
petrophysical properties found in a real deposit or reservoir often changes depending on the local 
mean – a property called heteroscedasticity.  For example, it is common to find a low variance in 
a low valued area, and a correspondingly high variance in a high valued area.  This 
heteroscedastic behavior is commonly referred to as the proportional effect (Journel and 
Huijbregts, 1978). 

Consider the well-known Walker Lake data set and the lead pollution data from Dallas.  A 
moving average approach was used with non-overlapping windows to determine the relationship 
between the local mean and variance.  Figure 2 shows a very strong positive correlation for both 
data sets, in fact its relation appears quadratic, i.e.  

( )2 2( ) ( )f mσ =u u  

Note that this relationship is characteristic of real data (alternatively, it is sometimes shown as a 
linear relation between the standard deviation and the mean value), and it is more pronounced for 
a lognormal distribution (Armstrong (1998), Chilès and Delfiner (1999)).  This relationship is 
neither new nor surprising.  Journel and Huijbregts (1978), Isaaks and Srivastava (1991), 
Goovaerts (1997), and Chilès and Delfiner (1999) have all discussed the importance of the 
proportional effect in natural resource characterization.  It is precisely in this aspect that direct 
simulation presents its biggest promise. 

Yet there is a major flaw in the foundation of direct simulation.  Its basis is founded in kriging, 
which yields a local variance that is data independent.  As a result, it cannot produce models that 
will reproduce the heteroscedastic behaviour that would otherwise be found in real mineral 
deposits or reservoirs.  Clearly, the flaw lies in the very fact that kriging is the engine behind the 
simulation.  For it to fulfil its promise, direct simulation must be built on a method that yields 
dependent mean and variance. 
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Future of DSS 

DSS is considered one of the future avenues for geostatistics.  It is among the latest in a series of 
simulation approaches that have been introduced in the last two decades.  Whether it will rank 
among the “standard” approaches remains to be seen, advances in particular areas will certainly 
be key to its popularity.  DSS promises (1) the ability to integrate multiple scale data since no 
transformation of the data is required, (2) reduced reliance on the multiGaussian paradigm, (3) 
simplicity in methodology, and (4) flexibility to consider different local distribution shapes to 
account for multivariate non-stationarity. 

These promises, however, are balanced by the pitfalls of DSS which include (1) the unavoidable 
influence of multiGaussianity due to the Central Limit Theorem, (2) problems in histogram 
reproduction which have led to ad hoc post-processing techniques, (3) the inability to account for 
spatial heteroscedasticity, specifically the proportional effect, and (4) flexibility in using different 
distribution shapes locally has not been shown to be practically advantageous or straightforward 
to implement. 

A number of issues must still be resolved to show a real advantage to DSS.  The practical 
significance of accounting for the proportional effect is enormous.  Resolution of this issue will 
lend serious credibility to DSS in construction of realistic numerical models, for application in all 
natural resource sectors.  A second area of research lies in inference of the multivariate 
distribution.  Many authors have expended tremendous research energies into univariate 
distribution inference, yet the true multiscale data integration benefits of direct simulation will 
never be realized if the multivariate distribution cannot be properly inferred. 

Although DSS was built on the principles of simple kriging, its future cannot remain anchored to 
simple kriging.  It does not lie in the homoscedastic kriging variance, as real data show a very 
strong relationship exists between the variance and the data values.  For it to be of practical 
significance and in fact, to prevent it from simply becoming an academic exercise, the underlying 
principle of DSS must permit a heteroscedastic variance that is data dependent.  This is contrary 
to its simple kriging foundations. 
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Figure 1 Kriging in terms of projection theory (redrawn from Journel and Huijbregts, 1978; 
Anton and Rorres, 1991). 
 

 
Figure 2 Illustration of proportional effect for Walker Lake data (top), and the lead pollution data 
from Dall (bottom).  Plan view of the data is shown on the left, and crossplots of local variance 
vs. local mean are shown on the right. 


